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Abstract. A new approach for the study of the integrability of differential-difference systems is
introduced. Given a differential-difference system (of such a form that it can be iterated without
necessitating the integration of a differential equation at any step) a two-stage strategy is used.
First, the singularity confinement necessary integrability criterion is used in order to limit the
possible choices. Once the system is sufficiently reduced, the (much stronger) requirement of
nonexponential growth of the degree of the iterates of some initial condition is implemented. This
method turns out to be powerful and practical. The investigation of a given class of differential-
difference systems has resulted in some well known integrable systems but also to two promising
integrability candidates (one of which is reduced to a known integrable case).

Integrable discrete systems have received much attention over the past few years resulting in
a much better understanding of their properties. In particular, discrete integrability criteria
have been proposed [1–3] and their judicious use could turn them into efficient integrability
detectors. The extension of these purely discrete methods to systems which are both discrete
and continuous is not trivial. The complication comes from the fact that these systems must
also satisfy the integrability requirements for their continuous part. Thus the right approach to
the study of the integrability of differential-difference systems should be based on a blending
of the continuous integrability methods and their discrete counterparts. In [4, 5] we have
presented a first approach to the study of the integrability of discrete–continuous systems. It
was based on the combination of the Painlevé singularity analysis, for the continuous part, and
the singularity confinement approach for the discrete part. The continuous singularity analysis
[6] consists in the requirement of an absence of critical movable singularities in the solutions
of a nonlinear differential equation (Painlevé property). The singularity confinement [1] is
based on the observation that a singularity, that appears spontaneously in an integrable discrete
system, disappears after some iterations. The discovery of this property led us to propose
singularity confinement as a necessary integrability criterion. Its use, essentially as a tool
for the de-autonomization of integrable discrete systems, made possible, among others, the
discovery of discrete andq-discrete Painlev́e equations. In a recent paper Hietarinta and Viallet
[3] presented examples of mappings which although satisfying the singularity confinement
requirement were not integrable. Thus singularity confinement is not a sufficient criterion (a
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fact already noted in [7]). What these authors proposed, in the particular case of birational
mappings, is a criterion based on the ideas of Arnold [8] and Veselov [9], on the growth of the
degrees of the iterates of some initial data under the action of the mapping. The main argument
is that a generic, nonintegrable, mapping has an exponential degree growth, while integrability
is associated with low growth, typically polynomial. In [10] we have examined the implications
of this approach on discrete Painlevé equations. We were able to show that the conclusions
based on singularity confinement were in total agreement with those of the nonexponential
growth requirement. Thus the use of singularity confinement for the de-autonomization of a
given integrable discrete system is perfectly justified (and considerably simpler than the study
of degree growth).

This paper is devoted to the study of the integrability of differential-difference systems
based on the low-growth requirements. We shall first apply this method to well known
integrable systems which were already examined in [5]. We shall then look for generalizations
of these systems using a mixed approach. Starting from a given functional form we first apply
singularity confinement in order to reduce the number of free parameters and, once the problem
becomes tractable, we use the low-growth criterion in order to obtain the final answer. It turns
out that in all the cases examined here the result of the application of this stringent criterion
coincides with that of singularity confinement (but this is perhaps due to the particular family
of systems we study).

The equations we will examine are of the general formun+1 = F(un−1, un, u
′
n, n, t) with

F homographic inun−1, rational inun, u′n and analytic inn, t and where the prime denotes
the derivative with respect tot . Given an equation of this form, we iterate initial conditions
in homogeneous coordinatesu0 = p, u1 = q/r, wherep, q, r are functions oft . We assign
to p (andt) the degree zero and we compute the degreedn of homogeneity inq andr of the
numerator and denominator ofun at every iteration. A different choice ofu0 could have been
possible but it turns out that the present choice of zero-degreeu0 considerably simplifies the
calculations.

We shall start with two well known integrable systems. The first is the Kac–Moerbeke
equation [11], also known as the Lotka–Volterra or semi-discrete KdV equation:

un+1 = un−1 +
u′n
un
. (1)

Let us explain how the degree growth is computed. We start fromu0 = p, u1 = q/r and
compute the first few iterates of (1). We thus obtain

u2 = pqr − q ′r − qr ′
qr

u3 = q2(pqr − q ′r − qr ′ + r ′2 − rr ′′) + r2(p′q2 + qq ′′ − q ′2)
(pqr − q ′r − qr ′)qr

and so on. Sincep and t are of degree zero andq and r of degree one we find that
the homogeneity degrees of the numerator and denominator ofu2 andu3 are respectively
d2 = 2 and d3 = 4. Computing the degree of the successive iterates we finddn =
0, 1, 2, 4, 7, 11, 16, 22, . . . , i.e. given bydn = (n2 − n + 2)/2 for n > 0. (A remark seems
necessary at this point concerning the closed-form expression ofdn. In order to obtain it
we start by computing a sufficient number ofdn and heuristically establish this expression.
We then compute the next few degrees and compare their values with the ones obtained
analytically.) The fact that the degree growth is polynomial is not astonishing given that the
Kac–Moerbeke system is integrable. The second system we shall examine is the semi-discrete
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mKdV equation [12]:

un+1 = un−1 +
u′n

u2
n − 1

. (2)

Again we find a polynomial growthdn = 0, 1, 2, 5, 8, 13, 18, 25, . . . . We have indeed
d2m = 2m2 andd2m+1 = 2m2 + 2m + 1. Again, nonexponential growth is expected since
the integrability of (2) is well established. Several more differential-difference equations have
been treated along the same lines resulting in every case in a polynomial growth of the degree
of the iterates.

Once our approach has passed this basic test it is natural to ask how we can generalize
equations (1) and (2). In order to keep this search for generalizations manageable we shall
limit ourselves to equations of the form:

un+1 = un−1 +
αu′n + βu2

n + γ un + δ

κu′n + ζu2
n + ηun + θ

(3)

whereα, . . . , θ, κ are functions ofn andt . Our approach will be based on a dual singularity
confinement/low-growth requirement strategy. We shall start by reducing the possible
integrable forms of (3) using the necessary criterion of singularity confinement and then analyse
the reduced form through the study of the degree growth. We start by supposing thatκ 6= 0,
(we takeκ = 1) in which case by translation we can putα = 0. Let us assume thatun is such
thatu′n + ζu2

n + ηun + θ has a simple zero for somet = t0. In this caseun+1 will have a simple
pole,un+1 ∝ 1/(t− t0). This singularity will propagate indefinitely, i.e.un+3, un+5 etc will also
have poles unless the following conditions are fulfilled:β = γ = ζ = 0, andηn+1 = ηn−1,
θn+1 = θn−1, δn+1−2δn + δn−1 = 0. Thusδ is linear inn while η andθ aren-independent with
even/odd dependence, which means that we haveηe(t), θe(t) for evenn and differentηo(t),
θo(t) for oddn. Introducingu = ξe,ov, whereξe,o = exp(− ∫ ηe,o dt) we can transform the
equation to

ξeξo(vn+1− vn−1) = δn

v′n + θe,o/ξe,o
. (4)

The factorξeξo can be absorbed inδ and a translation ofv, by
∫
θe,o/ξe,o dt , allows us to put

θ in the denominator of (4) to zero. Thus we arrive finally at the equation

vn+1− vn−1 = λ(t)n +µ(t)

v′n
(5)

where, moreover, it is possible to takeλ = 1 through a suitable redefinition of time. This
equation, as explained above, is a candidate for integrability. Once this reduced form is obtained
through singularity confinement we can apply the nonexponential growth criterion. We start by
considering the equationvn+1−vn−1 = a(n, t)/v′n wherea isa priori an arbitrary function ofn
andt . We compute, as in the case of systems (1) and (3), the degree growth starting fromv0 = p
andv1 = q/r and obtain the exponentially growing sequencedn = 0, 1, 2, 4, 8, 16, . . . , i.e.
dn = 2n−1 for n > 0. Next we ask how it is possible to curb this growth and it turns out that
we can, forn = 4, obtain a condition for the degree to be six rather than eight. This condition
is an+1 − 2an + an−1 = 0, i.e.a must be a linear function ofn, in perfect agreement with
the singularity confinement criterion. Implementing this constraint we can now compute the
degree growth for equation (5). We now obtain the sequencedn = 0, 1, 2, 4, 6, 9, 12, 16, . . . ,
i.e.d2m−1 = m2 andd2m = m(m+1), which are precisely the same values as the ones obtained
whena is a constant (in bothn andt). Thus the low-growth requirement criterion confirms the
possibly integrable character of (5). Although this is not aproof of its integrability, the fact
that this new criterion is satisfied strengthens the argument in favour of integrability. We shall
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return to this equation and show that it can be transformed to a known integrable system. For
the time being we compute its continuous limit. Equation (5) is another differential-difference
form of the potential KdV equation. Introducing the continuous variablesx = ε(n+t), s = ε3t

and takingv(n, t) = n− t + εw(x, s), a(n, t) = 2(−1 +ε4(b′(s)x + c(s)) we find at the limit
ε → 0 the equation

ws +w2
x − 1

6wxxx = b′(s)x + c(s). (6)

This is indeed a potential form of KdV. Differentiating once with respect tox we obtain for
the quantityW = wx − b(s) the equation

Ws + 2WWx − 1
6Wxxx = −2b(s)Wx. (7)

Introducing the new variablesT = s andX = x − 2
∫
b(s) ds we finally find

WT + 2WWX − 1
6WXXX = 0 (8)

i.e. the KdV equation.
Next we consider (3) in the particular caseκ = 0. In this case and providedζ 6= 0

a translation allows us to takeβ = 0 and, without loss of generality, the equation can be
rewritten:

un+1 = un−1 + α
u′n + γ un + δ

(un − ρ)(un − σ) . (9)

The singularity confinement analysis of (9) can be easily performed. Two confined singularity
patterns exist:{ρ,∞, σ } and {σ,∞, ρ}. Implementing the conditions for their existence
finally leads to the equation

un+1 = un−1 +

(
α

ρ

)
ρu′n − ρ ′un
u2
n − ρ2

(10)

whereα = λ(t)n + µ(t) andρ = φe,oα. Introducing the new variablev = u/ρ we can
transform equation (10) to

αn+1vn+1− αn−1vn−1 = v′n
v2
n − 1

(11)

where we have redefined time dt → φoφe dT . Thus the final form of this equation which
should be a candidate for integrability according to the singularity confinement criterion is

(n + 1 +ν(t))vn+1− (n− 1 + ν(t))vn−1 = v′n
v2
n − 1

(12)

where the time has to be redefined so as to absorb theλ factor, ν = µ/λ is an arbitrary
function of the new time and the prime denotes derivation with respect to this new independent
variable. At this stage we resort again to the study of the growth of the degree of the
iterates starting from equation (11) where we assume a genericα. The degrees obtained
aredn = 0, 1, 2, 5, 12, 29, . . . , obeying the recursion relationdn+1 = 2dn + dn−1 leading to an
exponential growth with asymptotic ratio 1 +

√
2. The condition ford4 to be less than 12 is

αn+1− 2αn +αn−1 = 0, i.e.α linear inn, exactly the same condition as the one resulting from
singularity confinement. Implementing this condition results in a polynomial growth identical
to that of equation (2), which is its autonomous (in bothn andt) counterpart. Thus equation
(12) should be integrable, and indeed it is. As was shown by Cherdantsev and Yamilov [13],
(see also [14]), this equation is the master symmetry of the semi-discrete mKdV.

Finally, we examine the caseκ = ζ = 0. If η were also zero, the right-hand side would
be polynomial and no simplifications could ever curb the exponential growth of the iterates.
Thus without loss of generality we can takeη = 1 and translation allows us to putθ = 0.
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The implementation of the singularity confinement criterion, whenu has a simple zero, leads
to the following constraints:δ = 0, βn = αn(α

−1
n+1 − α−1

n−1) and, introducing the auxiliary
quantityan = αnαn+1, we find thata must obey the recurrencean+1 − 2an + an−1 = 0, i.e.a
is linear inn. Before proceeding further we transform the equation by introducing the change
of variables:un = vnαn+1αnαn−1. We thus find

an+1vn+1− an−2vn−1 = v′n
vn

+ (an−1− an)vn + σn. (13)

Further implementing the singularity confinement criterion we find thatσ must ben-
independent in which case at-dependent gauge ofv can put it to zero. The final form of
our equation is

an+1vn+1− an−2vn−1 = v′n
vn

+ (an−1− an)vn. (14)

Next we implement the low-growth criterion on equation (14) without making any assumption
on a. We find the degree sequencedn = 0, 1, 2, 4, 8, 16, . . . , i.e. dn = 2n−1 for n > 0.
In order to limit this exponential growth we require that the degreed4 be seven instead of
eight. We readily find the conditionan+1 − 2an + an−1 = 0, i.e. exactly the one expected by
singularity confinement. Iterating further we find that providedan is linear inn, the degree
growth is identical to that of equation (1). This is quite natural since equation (14) is the master
symmetry of the Kac–Moerbeke equation and thus constitutes its integrable nonautonomous
extension [13].

Having obtained equation (14) we can now return to equation (5) and show how it can be
integrated. Starting from (5) we introducewn = vn+1−vn−1. We then have forw the equation

w′n
wn
= an+1

wnwn+1
− an−1

wnwn−1
. (15)

Next we introduce the variableun = −1/wnwn−1 and using (15) we recover equation (14)
exactly; the nonautonomous extension to Kac–Moerbeke we have just obtained.

We turn now to a second class of equations. Their study is motivated by the results of [15]
on differential-delay systems. We start from the general form

un+1 = un−1
αu′n + βu2

n + γ un + δ

κu′n + ζu2
n + ηun + θ

. (16)

First we perform the singularity confinement analysis on (16). We shall not present all the
details here but just give the final result:

un+1 = un−1
u′n + (γ ′e,o − λn− µ)un
u′n + (γ ′e,o + λn +µ)un

(17)

whereγe,o is a function oft with even/odd dependence andλ,µ are also functions oft . By
introducing the gaugeue = veeγe anduo = voeγo for u of even and odd indices we can put
γ to zero in (17). Thus the final form of (17), which would be a candidate for integrability
according to singularity confinement is

vn+1 = vn−1
v′n − (λn +µ)vn
v′n + (λn +µ)vn

. (18)

We now turn to a degree-growth analysis and start from an equationvn+1/vn−1 =
(v′n − a(n, t)vn)/(v′n + a(n, t)vn). For a generica we obtain a degree sequencedn =
0, 1, 2, 5, 12, 29, . . . , i.e. again an exponential growth with asymptotic ratio 1+

√
2. Requiring

a nonexponential growth we obtain the constraint fora: an+1 − 2an + an−1 = 0, i.e.
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an a linear in n, just as predicted by confinement. In this case the degree sequence is
dn = 0, 1, 2, 5, 8, 13, 18, 25, . . . , i.e. d2m = 2m2 andd2m+1 = 2m2 + 2m + 1, a polynomial
growth, precisely the same values as the case of constanta. Thus we expect system (18),
based on both singularity confinement and low-growth criteria, to be integrable. We cannot
offer a further proof for its integrability but we shall show that at the continuous limit it goes
over to an integrable equation. Indeed, we introduce the continuous variablex = εn and put
a = 1/ε + ε(b′(t)x + c(t)) while transformingv throughv = ew. We find thus the equation

wt = wx + ε2(b′(t)x + c(t))wx +
ε2

6
(wxxx − 2w3

x). (19)

Next we perform a Galilean transformation∂t → ∂x + ε2∂t and reduce (19) to

wt = (b′(t)x + c(t))wx + 1
6(wxxx − 2w3

x). (20)

Finally, introducing the new variablesT = ∫ e3b(t) dt andX = xeb(t)+
∫
c(t)eb(t) dt we obtain

wT = wXXX − 2w3
X (21)

which is just the potential modified-KdV.
In this paper we have examined some selected cases of differential-difference systems,

investigating their integrability. Our method was a new approach which combines the
singularity confinement (which is a well-established necessary integrability criterion) and
the low-growth requirement which provides a more stringent test at the price of considerably
heavier computations. Thus singularity confinement is used first in order to limit the freedom
of the initial ansatz and the low-growth criterion is subsequently implemented in order to
eliminate the nongenuine integrability candidates. We expect this method to become a very
powerful tool for the study of discrete integrability.

One interesting result is that in all cases investigated here the constraints provided by the
confinement requirement were sufficient and the implementation of the low-growth criterion
did not invalidate the conclusions. This result closely follows our conclusions in the case of
discrete Painlev́e equations and may be due to the structure of the particular class of equations
we are studying.

The approach presented above is suitable for differential-difference systems where one
does not have to integrate a differential equation along the way. One can then easily
assign weights to the various variables, compute the homogeneous degree and estimate
the rate of growth. However, there exist systems in which one does have to integrate a
differential equation at each iteration step. The differential-difference systems of the form
F(u′n+1, un+1, u

′
n, un, n, t) = 0 we examined in [5, 15] are of this type. The requirement for

the Painlev́e property of the differential equation we have at each step would, in this particular
case, mean that the equation obeyed by eachun must be a Riccati equation. Although the
degree-growth criterion cannot be applied to such systems we still can study them in the
framework of singularity analysis. An equation like the one considered in this paragraph can
be viewed perfectly as an infinite system of coupled differential equations. Thus a movable
singularity (which must be noncritical for the Painlevé property to be satisfied) appearing at
some iteration step will be present in the coefficients of the terms of the differential equations
corresponding to the subsequent iterations. Thus the systems of this type can be studied with
methods perfectly appropriate for purely differential systems.
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